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Zusammenfassung

Diese Arbeit befasst sich mit der Berechnung der Twin-Width von Graphen unter Ver-
wendung einer Reihe von Heuristiken, die darauf abzielen, optimale Kontraktionsse-
quenzen zu erreichen. Die Forschung geht Herausforderungen bei der Bestimmung der
Twin-Width an, indem sie Techniken wie zufällige Irrfahrt von ausgewählten Knoten-
punkten und die Verwendung von Knotengraden zur Identifizierung von Hauptkandida-
ten einsetzt. Die Studie führt auch nicht-triviale ”fast” Reduktionsregeln ein. Obwohl
diese Regeln keine strengen theoretischen Garantien bezüglich der Lösungsgröße bie-
ten, haben sie einen bemerkenswerten Einfluss auf den Verlauf der Kontraktionsbreite.
Durch die Kombination dieser heuristischen Ansätze bietet die Studie eine umfassende
Methode, die Ergebnisse für verschiedene Grafentypen verbessert. Ein flexibler Solver
wird entwickelt, der als solide Grundlage für weitere Untersuchungen zur Twin-Width
dient. Diese Arbeit vertieft nicht nur unser Verständnis von Twin-Width, sondern verfei-
nert auch verschiedene Parameter und geht dabei auf Neuberechnungen von Scores von
Knotenpaaren, Funktionsauswahl und mehr ein. Durch die Verschmelzung von theore-
tischen Erkenntnissen mit heuristischen Methoden erweitert diese These unser Wissen
über Twin-Width und ebnet den Weg für die Entwicklung von geschickteren Algorithmen
für komplexe Grafenstrukturen.

Abstract

This thesis addresses the computation of the twin-width of graphs using a range of heuris-
tics focused on achieving optimal contraction sequences. The research tackles challenges
in twin-width determination by employing techniques such as random walks from se-
lected vertices and using vertex degrees to pinpoint prime candidates. The study also
introduces non-trivial ”almost” reduction rules. While these rules lack strict theoretical
guarantees about solution size, they have a notable impact on the progression of contrac-
tion width. By combining these heuristic approaches, the study o↵ers a comprehensive
method that improves outcomes across di↵erent graph types. A flexible solver is devel-
oped, serving as a solid foundation for further exploration into twin-width. This work
not only deepens our understanding of twin-width but also refines various parameters,
delving into score recalculations, function choices, and beyond. Merging theoretical in-
sights with heuristic methods, this thesis enhances our knowledge of twin-width and sets
the stage for the development of more adept algorithms for intricate graph structures.
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Chapter 1

Intro

This chapter provides an overview of the thesis, covering motivation and related work.

1.1 Motivation

The parametrized complexity of algorithms is an evolving area of research. Initially
introduced by Gurevich, Stockmeyer, and Vishkin [GSV84] in their work on solving NP-
hard problems on graphs that are almost trees and an application to facility location
problems, this field has significantly evolved by exploring new classes of structures and
estimating their boundaries.

First-order model checking holds notable significance in this area. It is a technique to
evaluate if a given first-order formula holds true for a specified structure, aiding in the
analysis and understanding of complex graph structures and ensuring the correctness
of systems modeled by these graphs. The initial exploration of tractable FO model
checking started with bounded-degree graphs, as demonstrated by Seese [See96]. This
work set the stage for various generalizations across diverse graph classes. For instance,
Grohe, Kreutzer, and Siebertz [GKS14] showcased that FO model checking is tractable
on nowhere dense classes of graphs. Meanwhile, explorations into dense graph classes
started to grow. Important steps forward include the discovery of Linear Time Solvability
in MSO2 for graphs with bounded clique-width by Courcelle, Makowsky, and Rotics
[CMR00], and the FPT algorithm for general FO model checking on posets of bounded
width as illustrated by Gajarský et al. [Gaj+15], among other significant contributions.

Finally, in 2020, Bonnet et al. [Bon+20] expanded the fixed-parameter tractability
of FO model checking by introducing a new graph parameter called twin-width. This
theoretical result is important since it builds a bridge between dense and sparse graphs
in FO traceability world by generalizing some of the classes. Subsequently, several new
insights regarding twin-width have become available: posets of width d have a twin-width
of at most 9d, as stated by Balabán and Hlinený [BH21]. Additionally, Bonnet et al.
[Bon+21] established that deciding if a graph has twin-width at most 1 can be done in
polynomial time, and Schidler and Szeider [SS21] introduced an e�cient SAT-encodings
for the twin-width problem.

Intuitively, twin-width is a graph parameter that measures how close a graph is
to a cograph. A cograph is a special type of graph that can be transformed into a
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10 CHAPTER 1. INTRO

single vertex by repeatedly identifying and merging pairs of vertices, known as twins,
that share the same neighbors. Finding and merging such twins is a straightforward
process in a cograph, leading to a zero twin-width. However, when dealing with graphs
that are not cographs, we might encounter vertices that don’t share all neighbors in
common. This discrepancy is marked with red edges, representing a penalty for the
non-common neighbors. The accumulation of these penalties, measured through red
edges, helps determine the graph’s twin-width, indicating the extent of deviation from
the ideal cograph structure.

An optimal sequence of vertex pairs that minimizes this penalty is called a d-sequence,
where d represents the twin-width of the graph. Knowing this d-sequence is crucial, as
we cannot solve FO model checking without it. This brings us to a crucial question:
Are there any reasonable methods to estimate the twin-width for general graphs and
derive a corresponding d-sequence? This bachelor thesis explores various approaches to
determining such sequences for general graphs as precisely and quickly as possible.

1.2 Our contributions

In this bachelor thesis, our primary goal is to delve into various heuristic methods to
estimate the twin-width of graphs, focusing on obtaining close to optimal contraction
sequences. The journey begins with a thorough exploration of the inherent challenges
associated with twin-width determination. Chapter 2 introduces all necessary defini-
tions and notations for understanding the twin-width problem. Chapter 3 provides a
foundational understanding, from examining the limitations of brute force approaches
to a preliminary analysis of graph instances. A key takeaway is the non-trivial nature
of vertex contraction decisions.

Chapter 4 delves into strategies for identifying vertex pairs. We harness vertex de-
gree information in Subsection 4.1.1 to filter potential vertex pair candidates, followed
by implementing multiple random walks in Subsection 4.1.2, which capitalizes on the
observation of optimal vertex pairs’ neighborhood relations. A hybrid approach, ex-
plored in Subsection 4.1.3, leverages the strengths of both methods based on the graph’s
degree deviation. As we venture deeper, Section 4.2 discusses various score functions
and threshold choices to gauge the optimality of vertex pairs, primarily focusing on
neighborhood sizes and degree di↵erences.

Chapter 5 o↵ers a shift towards optimization techniques. The ”almost” reduction
rules in Section 5.1 present both straightforward preprocessing techniques, such as twin
elimination, and more ambitious approaches. However, di↵erent strategies for the one-
degree rule in Subsection 5.1.2, despite their potential, did not significantly improve the
solution size. We then transition to the utility of caching scores in Section 5.2, emphasiz-
ing the balance between computational e�ciency and result accuracy. We also consider
bipartite graphs in Ssection 5.3. Interestingly, our heuristics’ natural tendency to con-
tract vertices from the same partition means the bipartiteness of the graph wasn’t as
advantageous as initially expected. Lastly, the density trick outlined in Section 5.4 show-
cases a simple yet e↵ective method to significantly improve both runtime and solution
sizes.

Conclusively, this thesis does not only focus on the theory but also provides a practi-
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cal lens for estimating contraction sequences with a low width. Alongside our theoretical
contributions, we have developed a solver, which has been crucial in benchmarking di↵er-
ent strategies. This tool, available for further exploration and contributions [Kos23], lays
the groundwork for future exploration, setting a firm foundation for continued research
into the intricacies of the twin-width problem.

1.3 Related work

In 2023, the PACE Challenge designated Twin-Width as the problem of the year for
both exact and heuristic categories. This selection highlights the problem’s importance
and intricacy. The challenge prompted the creation of a diverse range of innovative
solvers, tailored to handle exact and heuristic computations of the twin-width of graphs.
Since our work and the challenge were conducted in parallel, there are instances where
our thesis complements and overlaps with the results of some solvers presented in the
challenge.

Among the heuristic solvers, GUTHM: Greedily Unifying Twins with Hashing and
More [ALP23] stood out with its greedy approach, employing di↵erent strategies based
on the information gathered from previous contractions. Similarly to our solver, it
employs a random-walk approach but in a di↵erent variation. Zygosity [EAV23] adopts
a randomized greedy heuristic, considering multiple random contractions at each step
and selecting the best one based on red degree and intersection size. In our work, we
consider a similar heuristic that we call the intra-set pairing heuristic and, as a result,
extend this work. We explore how the total degree and red degree a↵ect the choice of the
vertices of the potential contraction. RedAlert [BD23] follows a unique scheme involving
estimation, sampling, and selection of candidate pairs for contraction, switching to cruder
heuristics as time runs out.

On the exact solvers’ front, Hydra Prime [YMS23] performs modular decomposition
with upper- and lower-bound algorithms, introducing innovative approaches like timeline
encoding and hydra decomposition for enhanced performance. GUTHMI [ALP23], on
the other hand, employs a branch-and-bound paradigm, leveraging heuristics to trim
down the search space.

In addition to the challenge results, there are some theoretical findings concerning
upper bounds for the twin-width of specific graphs. For example, Hliněný and Jedelský
[HJ23] demonstrated that the twin-width of planar graphs is at most 8 and reduces to at
most 6 for bipartite planar graphs. These findings suggest alternative approaches that
might be employed to estimate a contraction sequence.





Chapter 2

Preliminaries

This chapter is used to define preliminary terms and notation. We define the rudimentary
elements such as vertices, edges, and neighborhoods, followed by more specific concepts
like contraction sequences, black and red neighborhoods, and twin-width.

Basic definitions

G = (V,E,R) A trigraph G is a triple, comprising a set V of vertices, a set E of all
edges and a set R of red edges. Each edge is a 2-element subset of V ;

V (G) the vertex set of G;

E(G) the edge set of G with E(G) ✓
�V (G)

2

�
; for an edge e = {u, v} 2 E(G) the two

vertices u and v are called endpoints of e;

R(G) the red edge set of G, edges colored red;

B(G) the black edge set of G; edges colored black, formally B(G) := E(G)\R(G);

|S| the cardinality of a set S is the number of elements in S;

V the number of vertices, formally, V := |V (G)|;

E the number of edges, formally, E := |E(G)|;

N(v) the (open) neighborhood of v, formally, N(v) := {u 2 V ; {u, v} 2 E(G)};

N [v] the (closed) neighborhood of v, formally, N [v] := N(v) [ {v};

deg(v) the degree of v, formally, deg(v) := |N(v)|;

red(v) the red degree of v, formally, red(v) := |NR(v)|;

G[U ] the induced subgraph of G on U ✓ V , formally, G[U ] := (U,E(G) \
�U
2

�
);

G� V
0 the graph obtained from G by deleting the vertices V 0

✓ V (G), formally, G �
V

0 := G[V (G)\V 0];

13



14 CHAPTER 2. PRELIMINARIES

NR(v) the vertex set adjacent to the vertex v with a red edge, the red open neighbor-
hood of v, formally, NR(v) := {u 2 V ; {u, v} 2 R(G)};

NB(v) the vertex set adjacent to the vertex v with a black edge, the black open
neighborhood of v, formally, NB(v) := {u 2 V ; {u, v} 2 B(G)};

NR[v] the vertex set adjacent to the vertex v with a black edge including v itself, the
black closed neighborhood of v, formally, NR[v] := NR(v) [ {v};

NB[v] the vertex set adjacent to the vertex v with a black edge including v itself, the
black closed neighborhood of v, formally, NB[v] := NB(v) [ {v}.

The notion of twin-width is explored through a sequence of operations referred to
as contractions. Unlike the traditional notion of edge contraction, our definition of
contraction operates on a pair of vertices and follows a unique set of rules, as described
below:

Contraction of two vertices For a vertex pair (v, u) 2 V (G), where either (v, u) 2
E(G) or (v, u) /2 E(G), we define a special operation called contraction as follows

1. If an edge (v, u) 2 E(G) exists, it gets deleted;

2. For every vertex w, if w 2 NB(v) \NB(u), an edge (v, w) remains black

3. For every vertex w, if w 2 N(v) but w /2 N(u), an edge (v, w) gets colored red,
formally, (v, w) 2 NR(v) and (v, w) 62 NB(v). If an edge was already red, nothing
changes.

4. For every vertex w, if w /2 N(v) but w 2 N(u), a red edge (v, w) is added to the
graph, formally, (v, w) 2 NR(v) and (v, w) 62 NB(v)

5. u gets deleted from the graph, formally, u /2 V (G) and 8w 2 V (G).(u,w) /2 E(G)

This unique definition of contraction helps understand a contraction sequence and
the calculation of the twin-width of the graph.

Contraction sequence A contraction sequence for a graph G = G1 is defined as
an ordered sequence of vertex pairs ((v1, u1), (v2, u2)...(vn�1, un�1)), where |V (G)| = n,
following the rules:

1. v1 2 V (G1) and u1 2 V (G1)

2. A vertex pair (v1, u1) is contracted so that one gets an induced graph G2 ⇢ G

where v2 2 V (G2) and u2 2 V (G2)

3. It holds inductively for all vi and ui in Gi where i 2 [n]

4. After last contraction of vertex pair (vn�1, un�1) we get |V (G)| = 1
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Twin-width The width of a contraction sequence S is the maximum red degree of
any vertex that appears during the contraction process denoted by width(S), formally
width(S) := maxi

�
maxv2V (Gi) red(v)

 
. Width of the contraction sequence S at i-th

step is denoted by width(Si) where Si ✓ S for all i 2 [V � 1] where V is a number
of vertices in the graph. The twin-width of the graph tww(G) represents the minimum
possible width achievable through a contraction sequence.

v u w
(v, u)

vu w
(vu, w)

vuw

(a) Suboptimal contraction sequence.

v u w
(v, w)

vw u
(vw, u)

vuw

(b) Optimal contraction sequence.

Figure 2.1: Examples of contraction sequences on a path.

In all our figures, for illustrative purposes, we depict the result of contracted vertices
as a combination of their names. Refer to Figure 2.1 for an illustration of two distinct
contraction sequences. In subfigure (a), the vertex pair (v, u) is contracted suboptimally.
As a result, since vertex u has a unique neighbor w, the edge to w becomes red, elevating
the contraction width to 1. In contrast, subfigure (b) showcases a more e�cient approach.
Here, the twin pair (v, w) is identified and contracted, followed by the contraction of the
remaining vertices. This results in a contraction width, and correspondingly a twin-
width of the graph, of 0.

Experimental Environment All the experiments in this study were run on a virtual
machine (VM) to keep the environment consistent. The VM operated on Ubuntu 22.04
with an aarch64 architecture and was given 4GB of memory to ensure it had enough
resources to carry out the tests. The program used for the experiments was not par-
allelized and was configured to run always with one thread, ensuring a straightforward
execution and evaluation. This setup helped in obtaining reliable results throughout the
experiments and also makes it easier for others to reproduce the work done in this thesis.





Chapter 3

Problem Insights

Bergé, Bonnet, and Déprés [BBD21] showed that computing twin-width at most 4 is a
NP-complete problem. In this chapter, we analyze the twin-width problem to under-
stand better that aids in devising e�cient solutions. In Section 3.1, we examine the time
complexity of the brute-force approach. In Section 3.2, we delve into the cost of con-
tracting vertices. In Section 3.3, we analyze heuristic instances from the PACE challenge
to better understand the problem domain. In Section 3.4, we explore the uncertainty
in selecting a vertex pair for contraction, discussing how a locally optimal choice may
lead to a worse contraction width globally. Through this examination, we aim to lay the
groundwork for more e↵ective algorithm development.

3.1 Time complexity for all possible merges

Let’s first consider the brute-force approach for iterating through all possible contraction
sequences. We define it as follows:

1. Suppose we order all vertices V (G) = (v1, v2, ...vn) with |V (G)| = n. Then, for
vertex v1 there are n� 1 candidates for a possible contraction. For vertex v2 there
are correspondingly n � 2 candidates since we consider contraction of vertex pair
(v, u) and (u, v) as equivalent, even though it results in di↵erent but isomorphic
graphs. We define T (n) as a number of all possible vertex pair contractions on a
graph with n vertices. Therefore, for the first graph state G1, where |V (G1)| = n,
number of all possible merges is defined as follows:

T (n) = (n� 1) + (n� 2) + ...+ 2 + 1 =
n · (n� 1)

2

2. For every subsequent induced graph Gi�1 after successful contraction in the graph
Gi holds that |V (Gi�1)| = |V (Gi)| � 1. As a result, we can inductively define a
number of steps for the following graph:

T (n� 1) =
(n� 1) · (n� 2)

2

17



18 CHAPTER 3. PROBLEM INSIGHTS

3. To compute the total time complexity of a brute-force approach we would need to
multiply all possibilities in each step:

T (n) · T (n� 1) · ... · T (2) =

n · (n� 1)

2
·
(n� 1) · (n� 2)

2
· ... ·

2 · 1

2
=

n · (n� 1)2 · ...22 · 12

2n�1
=

n! · (n� 1)!

2n�1

Considering a number of all possible merges, we can conclude that the upper bound
for a brute-force would be O(n!) since a factorial function grows faster than an expo-
nential with a constant base.

While it might seem clear that brute-force isn’t suitable for our algorithms, the steep
time complexity underscores its ine�ciency. It emphasizes the necessity for a more
intelligent and cost-e↵ective method to identify optimal pairs.

3.2 Time complexity for contracting vertices

In our work, we use an adjacency list as the method for storing graph edges. This choice
is primarily driven by the nature of our graph instances, as we discuss in 3.3. These
instances are both vast in size and sparse in terms of connections, making the adjacency
matrix representation impractical and ine�cient. As mentioned before, contracting a
vertex pair consists of 5 steps with the following complexities:

1. Removing the edge (v, u) if it exists: This operation has a time complexity of
O(E), where E is the number of edges.

2. Updating the red edges for common neighbors of v and u: The time
complexity is O(deg(v) + deg(u)).

3. Marking the unique neighbors of v as red: This operation takes O(deg(v)).

4. Transferring unique red edges from u to v: The complexity of this step is
O(deg(u)).

5. Removing the vertex u: For this operation, the time complexity is O(V + E),
where V is the number of vertices.

Given the above steps, the overall worst-case time complexity of the vertex merging
operation using the adjacency list representation is O(V + E). Due to the dominating
growth of the factorial function, the O(V +E) complexity of the vertex pair contraction
becomes negligible in the context of the overall complexity.
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3.3 Preliminary instances analysis

In developing heuristic algorithms, understanding the dataset’s structural properties is
paramount. Prior to formulating our heuristic, we undertook an analysis to ascertain
key attributes of the graphs in our instances. In our work, we mainly use both public
and private instances from the PACE Challenge heuristic track if we don’t explicitly
mention some other types of graphs. We use the same limits as for the challenge; in
particular, run our solver on each instance for 5 minutes.
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Figure 3.1: On the left plot, logarithmic distribution of vertices against edges, on the
right plot boxplot representation of degree metrics on a logarithmic scale

The primary examination focused on graph size by plotting vertex against edge
distributions. As seen in the left subplot of Figure3.1, most instances are concentrated
around 105 vertices and 106 edges. Notably, there are outlier instances with a substantial
scale of 106 vertices and 107 edges, highlighting the need for a scalable heuristic approach.

Further structural analysis was conducted on the degree distribution. Degree, a
crucial parameter, o↵ers insights into the potential complexity and challenges of heuristic
methods. The box plots of degree metrics indicate the presence of both dense and sparse
graphs in the dataset. Notably, there exist large graphs with a low average degree,
necessitating a heuristic adaptable to both graph size and density variations. Besides,
we found that 19 out of 200 graphs were bipartite, and 12 were planar. We try to handle
some of such special cases in Section 5.

Connected Components In our analysis of the graphs, one observation stood out
clearly: most of these graphs, in particular 135 instances out of 200, consist of just one
connected component.

However, some graphs, especially the larger ones, still contain numerous separate
components, as shown in Figure 3.2. When a graph breaks down into these separate
components, we can approach each as an individual problem. Since the width of the
contraction is determined independently for each component, the overall complexity
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Figure 3.2: Cumulative distribution function (CDF) plotted on a logarithmic scale,
illustrating the proportion of graphs with multiple connected components

for the entire graph is essentially defined by its most complex part. In other words,
we’re essentially paving the way for the entire graph’s solution by solving for the most
challenging component.

Further refinements and improvements of our default solver would always be per-
formed on each connected component individually since otherwise results might be
screwed by merging vertices from di↵erent components.

3.4 One merge a↵ects further merges

The main challenge in computing an optimal contraction sequence is that a locally op-
timal decision—a contraction that minimizes the emergence of new red edges and mini-
mally increases the width of the graph—can potentially lead to less favorable outcomes
in the end. As of now, it’s unclear how a non-optimal contraction step, judged by the
number of new red edges it produces, might contribute to achieving the most optimal
contraction sequence, which in turn would define the twin-width of the graph.

Consider the following example in the Figure 3.3. We have two contraction sequences
S
⇤ and S that consist of the same vertex pairs for the first 6 contraction steps, so we

end up with G7 as the current state of the graph. In S
⇤ as a next step we contract

vertex pair (6, 3) and get a corresponding width of 3. But by contracting (3, 8) in S we
still remain width unchanged with width equals 2. However, if we consider all possible
contractions in the next step on the graph G8,2, we won’t be able to find any pair that
wouldn’t increase the width of the next contraction sequence to 4. On the contrary, we
can find such pairs for S

⇤, which showcases that locally optimal steps might cause a
suboptimal contraction sequence as a result.



3.4. ONE MERGE AFFECTS FURTHER MERGES 21

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

G1

1 5 9 13

2 6 14

3 7 11 15

4 8 12 16

G2

Contract (13, 10)

5 13

6 14

3 7 15

8 12 16

G7

· · ·

Contract
(6, 1)

(7, 4)

(14, 9)

(16, 11)

(5, 2)

5 13

6 14

7 15

8 12 16

G8,1

Contract (6, 3)

· · ·

5

Contract
(12, 7)

(15, 13)

(8, 16)

(12, 15)

(6, 14)

(8, 6)

(5, 12)

(5, 8)

5 13

6 14

3 7 15

12 16

G8,2

Contract (3, 8)

· · ·

15

Contract
(15, 12)

(15, 13)

(16, 3)

(15, 7)

(16, 6)

(15, 16)

(15, 14)

(15, 5)

Figure 3.3: Example of optimal contraction sequence S
⇤ on the left and suboptimal S

on the right with width(S⇤) = 3 and width(S) = 4





Chapter 4

Heuristics for finding Twin-Width

In this chapter, we delve into the development and evaluation of heuristics aimed at
e�ciently discovering contraction sequences with low width. Initially, in Section 4.1,
we explore various strategies to identify promising vertex pairs for contraction based
on the subsequent red edges generated post-merging, substantiated with experimental
evaluations. Section 4.2 introduces our approach to approximating optimal vertex pairs
through di↵erent measurement metrics, addressing the inherent challenge in assessing
the suitability of a vertex pair for contraction, as mentioned in 3.4, and discusses the
decision of threshold selection, particularly in the context of larger graphs, to fine-tune
the performance of our heuristics. Through this chapter, we aim to establish a solid
foundation of heuristics to navigate the challenges of twin-width computation.

4.1 Strategies of finding vertex pairs

In this section, we explore strategies for finding vertex pairs to contract. In Subsec-
tion 4.1.1, we utilize vertex degree information for pairing similar vertices. In Subsec-
tion 4.1.2, we design a heuristic based on the random walk from the vertices of the low
degrees. Finally, in Subsection 4.1.3, we combine both approaches to enhance the pairing
results.

4.1.1 Intra-Set pairing

One of the ideas is to start building a valid contraction sequence through vertices with
small neighborhood sizes to avoid triggering such vertex pairs that would cause a drastic
red degree increase after a single contraction. The intuition behind that is that the lower
the vertex degree, the fewer edges from this vertex pair can become red.

We also implement the same strategy with a slight modification: instead of consid-
ering the total degree of vertices, we use only the red degree. Compared to the former
version, where we don’t account for any information related to the red edges while ver-
tex selection, this heuristic considers the red degree. This objective is important since it
might directly influence the final width of the contraction. The idea for both heuristics
looks as follows:

1. Begin with an empty contraction sequence S.

23
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2. Until the graph is contracted down to a single vertex, repeat the following steps:

(a) Select the first ⌘ vertices from V (G) with the smallest degree (or red degree
in the modified version), denoting them as candidates.

(b) Among these candidates, find the pair of vertices (v, u) that, when contracted,
yields the smallest score according to a scoring function score(v, u) whose
variations we discuss in 4.2.1.

(c) Add this pair (v, u) to the contraction sequence S, and update the graph G

by contracting this pair.

3. Once the graph is contracted down to a single vertex, the contraction sequence S

is returned as the output.

For the benchmarking, we choose ⌘ = 20 as the number of vertices that we take in
each iteration. That means that we would consider 20·21

2 = 210 pairs at each iteration.
Further discussion of choosing ⌘ follows in 4.2.2. Here are the results of both versions of
the heuristic:

Figure 4.1: Comparison of intra-set heuristics based on low red degree or degree vertices.
On the left, the solution sizes are displayed on a logarithmic scale, and on the right, the
execution times.

Surprisingly, the degree-based heuristic performed much better than the red degree
one, both in terms of solution size and required time. It solved 61 instances better
compared to 14 for the latter one, and 52 instances quicker compared to 17 for the red
degree based.

Our understanding of the results is the following: even though the degree-based
heuristic doesn’t consider red edges for filtering out the vertices, it minimizes the neigh-
borhood size of the vertex pair. This implies that the number of potential red edges
is bounded by this neighborhood size. On the contrary, the red degree heuristic filters
out the vertices with the least red edges at the moment. However, this doesn’t reveal
anything about potential red edges after the contraction.

In Figure 4.2, we can see how the width of the contraction sequence changes after each
contraction step. We visualized it for three cases: where solution size didn’t di↵er much
and where it was dominated by one of the heuristics significantly. In all cases, we can see
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Figure 4.2: Change of the width of the contraction sequence over iteration steps. On
the left plot both heuristics performed similarly, on the middle one the degree heuristic
dominates, and on the right plot the red degree heuristic prevailed, all sorted by twin-
width value for deg(v).

one pattern clearly: degree-based heuristics doesn’t have such drastic jumps in solution
size compared to the one based on the red degree. This makes sense in the context of
our previous hypothesis: the red degree heuristic doesn’t consider total neighborhood
sizes of the vertices and hence fails to identify near twins that have somewhat similar
degrees.

We stick further with the intra-set pairing heuristic based on the total degree of the
vertices since it produces better results.

4.1.2 Random walk

As an intuition for the next heuristic, we make the following observation:

Observation 4.1. Two vertices v and u can have common neighbors if and only if they
are within the second neighborhood of each other

Compared to the degree-based heuristic, where we choose and pair vertices based on
the size of the neighborhood, now we want to ensure that our candidates for a contraction
would have some common neighbors, which wasn’t always the case with the previous
strategy that makes an e↵ort to take vertices with the same degrees but it doesn’t say
much about common neighbors. The fact that vertices have some common neighbors
might hint that they are located in one area of the graph and, as a result, it might be
more beneficial to contract them, even though this is not always the case we will see in
the paragraph about 2-Neighborhood.

In this heuristic, we commence with an empty contraction sequence, S. During each
iteration, until the graph is reduced to a single vertex, we initially pick the first ⌘ vertices
with the lowest degree (or red degree) as candidates. We employ both strategies as in the
previous heuristic for the following reasons. In the previous approach, the heuristic based
on the red degree performed worse compared to the degree one since it didn’t account
for the total degree di↵erence within a vertex pair. Here, however, instead of finding
pairs within this set, for each candidate vertex v1, we perform a random walk: randomly
deciding to take either one or two steps to reach a vertex v2, moving to neighboring
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vertices. We then calculate a score for contracting the pair (v1, v2) using a predefined
scoring function. Among all the pairs obtained from these random walks, we identify the
pair with the minimum score as the best pair for contraction, add it to the contraction
sequence S, and update the graph by contracting this pair. This process iterates until
the graph is contracted down to a single vertex, at which point the contraction sequence
S is returned as the output. Here is the pseudo-code:

Algorithm 1 FindRandomWalkContraction

Input: G = (V,E,R)
Output: Contraction sequence S = ((v1, u1)...(vn�1, un�1))
1: function FindRandomWalkContraction(G)
2: S  ;

3: while |V | > 1 do
4: candidates first ⌘ vertices in V with the lowest red degree
5: scores {}

6: for v1 in candidates do
7: v2  randomWalk(v1)
8: scores[(v1, v2)] = score(v1, v2)
9: end for

10: best pair  pair (v, u) in scores with minimum score(v, u)
11: S  S [ {best pair}

12: Contract best pair
13: end while
14: return S

15: end function

16: procedure randomWalk(v)
17: neighbors getNeighbors(v)
18: if flipCoin() = HEADS then
19: return chooseRandom(neighbors)
20: else
21: v

0
 chooseRandom(neighbors)

22: neighbors
0
 getNeighbors(v0)

23: return chooseRandom(neighbors0)
24: end if
25: end procedure

For the previous intra-set pairing heuristic, we selected ⌘ = 20 and evaluated 210
vertex pairs in each iteration. To maintain a comparable number of pairs with this
approach, we opt for 10 random walks for every vertex taken instead of just one single
random walk.

In contrast to the previous heuristic, where a degree-based approach predominantly
yielded better outcomes than the one based on the red degree, the results from this
heuristic did not exhibit a significant di↵erence. As expected, the red degree random
walk performed better, primarily because, unlike before, the neighborhood size factor
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Figure 4.3: Comparison of random-walk heuristics based on low red degree or degree
vertices. On the left, the solution sizes are displayed on a logarithmic scale, and on the
right, the execution times.

was not a determining element for either approach in this heuristic. It solved nearly
twice as many instances successfully as the degree-based one, with a count of 44 versus
24. In terms of time, there isn’t a substantial di↵erence noted.

2-Neighboorhood problem Ideally, for any given vertex v, we would examine its
entire first and second neighborhoods to identify the most suitable candidate for contrac-
tion. However, even for graphs with 103 vertices and 105 edges, this approach becomes
computationally intensive. This is particularly concerning given our use of a while loop,
which inherently carries a complexity of O(V ).

Unfortunately, the random walk heuristic still does not guarantee the similarity of
vertices. Consider the scenario in Figure 4.4a, a subplot of Figure 4.4. Even though v

and u are adjacent, they lack common neighbors. Contracting such a vertex pair would
significantly increase the contraction width, turning all edges from v and u red. A similar
challenge arises in Figure 4.4b, where v and u might share just a single common neigh-
bor, leading to a comparable situation. In the subsequent Subsection 4.1.3, we explore
methods to optimize the random walk heuristic to minimize these adverse scenarios.

v u

(a) Direct neighbors without common
neighbors.

v u

w

(b) Two-hop neighbors with a single com-
mon neighbor.

Figure 4.4: Illustrations of direct and two-hop neighbor relationships in a graph.
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(a) Comparative performance of heuristics
based on solution quality.

(b) Comparative performance of heuristics
based on execution time.

Figure 4.5: Comparison of random-walk and intra-set heuristics in terms of solution
quality and execution time.

4.1.3 Best of both worlds

In Figure 4.5, we compared the optimal versions of both heuristics. An intriguing trend
emerged: in a substantial portion of the instances, the random walk heuristic outper-
formed the intra-set heuristic consistently and vice versa, as seen in Figure 4.5a. Both
heuristics outperformed each other on an equal number of instances, with each solving
39 instances more e↵ectively. Notably, of the 39 instances that the intra-set heuristic
managed to solve, 7 could not be resolved by the random walk heuristic within the set
time limit. The trend is further illustrated in Figure 4.5b: the random walk heuris-
tic consistently requires significantly more time to solve an instance compared to the
intra-set heuristic.

Upon closely examining the specific instances and their attributes, we noted a con-
sistent trend: the random walk heuristic exhibited better performance on instances with
low degree deviation. To understand why this behavior occurs, consider the following:

1. Both the random walk and intra-set heuristics choose vertices based on their degree.
However, their approaches to utilizing this degree information di↵er:

• Random Walk Heuristic: While it selects vertices based on degree, it
doesn’t necessarily seek pairs within this selected set. Therefore, the perfor-
mance of the random walk heuristic depends on how strongly di↵er degrees
of the vertices: high degree deviation means a wider range of vertices. This
means it often misses the opportunity to leverage the fact that the vertices
within the initially taken set have comparable degrees, potentially leading to
suboptimal contraction sequences.

• Intra-Set Heuristic: This heuristic not only selects vertices based on degree
but also actively searches for pairs within this set. By doing so, it capitalizes
on the inherent similarity in degrees, which can result in lower contraction
width.
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Instances V E Mean Degree Avg Deviation Intra-Set Random Walk

I
n
t
r
a
-
S
e
t

heuristic 006.gr 1500 5.69⇥ 10
5

758 193 871 1346

heuristic 007.gr 1500 8.47⇥ 10
5

1129 96 601 960

heuristic 013.gr 4087 1.85⇥ 10
5

90 57 312 435

heuristic 017.gr 9072 4.65⇥ 10
5

102 107 722 1146

R
a
n
d
o
m

w
a
lk heuristic 029.gr 14822 3.5⇥ 10

5
155 3 56 20

heuristic 033.gr 18454 1.17⇥ 10
5

13 3 224 22

heuristic 036.gr 20082 1.31⇥ 10
5

13 2 233 21

heuristic 057.gr 32766 1.60⇥ 10
5

9 3 67 11

Table 4.1: Comparison of heuristics across various instances, grouped by the heuristic
that performed better for each instance group. Bold values indicate better results.
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Degree

Figure 4.6: Degree distribution plots: The first two highlight graphs favoring the intra-
set heuristic due to high degree deviation. The latter two showcase graphs where the
random walk heuristic performs better due to minimal degree deviation.

2. Impact of low degree deviation on heuristics:

• When the degree deviation of a graph is minimal, the random walk heuris-
tic’s chances of encountering a suboptimal vertex pair diminish significantly.
Under these circumstances, the heuristic benefits from the inherent degree
uniformity much like the intra-set heuristic.

• Furthermore, the random walk heuristic has an additional advantage. Since
it selects vertices from the second neighborhood, there’s a higher likelihood
that these vertices share common neighbors. This proximity often leads to
more favorable outcomes in graphs with low degree deviations.

Through this analysis, it’s evident that the degree distribution of the graph plays
a crucial role in determining the e↵ectiveness of the employed heuristic. Refer to Fig-
ure 4.6, where the degree distribution of various instances is visualized. In the first two
plots, instances are presented where the intra-set heuristic outperformed, showcasing a
distinct degree distribution. Contrarily, the latter two plots highlight instances where the
random walk heuristic excels, and it’s evident how the degree distribution di↵erentiates
from the previous. Delving deeper into the specifics, Table 4.1 further enumerates results
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(a) Comparative performance of heuristics
based on solution quality.

(b) Comparative performance of heuristics
based on execution time.

Figure 4.7: Comparison of previous heuristics with combined approach in terms of solu-
tion quality and execution time.

across various instances. Examining this table reinforces our observation, corroborating
the consistent trend seen in the degree distributions and the relative performance of the
two heuristics.

Upon closely analyzing instances where the random walk heuristic outperformed its
counterpart, we established a guideline for our solver: if the average degree deviation is
less than 25, the random walk heuristic is employed; otherwise, the intra-set heuristic
is used. As depicted in Figure 4.7, this di↵erentiation e↵ectively leverages the strengths
of both heuristics in many scenarios. We used seed for our random generator to achieve
reproducible results. From Figure 4.7a, it’s evident that we successfully address both the
instances with low solution sizes and those towards the higher end. Nonetheless, there
are some instances where the di↵erentiation based on average degree was suboptimal,
leading the solver to select a less-than-ideal heuristic. Even so, employing this technique
improves our solver’s performance, allowing it to tackle 56 instances better, compared
to the 39 instances by each heuristic individually.

4.2 Approximating optimal vertex pairs

This section delves into strategies for approximating optimal vertex pairs. In Sec-
tion 4.2.1, we explore various score functions to evaluate vertex pair quality. Section 4.2.2
then discusses the threshold choice, determining how many vertices are considered during
each iteration.

4.2.1 Score function

One of the most important aspects of getting an optimal contraction is estimating how
merging a specific vertex pair will a↵ect the width of the contraction. That’s why we
introduce a score function that is going to estimate the merge score for a vertex pair.
The first approach to get a score for a vertex pair is to consider a symmetric di↵erence
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of the neighborhoods:

score(v, u) := |N(v) [N(u)�N(v) \N(u)| (4.1)

It expresses a number of non-common neighbors for this vertex pair. Using this
score function, we locally measure how many red edges would be introduced for a source
vertex after the merge. The problem with this scoring method is its inaccuracy: even
though we get the number of new red edges for a vertex v, it is possible that one of the
neighbors’ red degrees exceeds it and, indeed, increases the width of the contraction.
Consider the following example:

w v u

N(u) \N(v)

Gi

(v, u)
w vu

N(u) \N(v)

Gi+1

Figure 4.8: An example of a contraction step that, despite its seemingly low score,
inadvertently leads to an increased contraction width.

Consider a graph state Gi on a Figure 4.8 after i contraction steps where the maxi-
mum red degree before that didn’t exceed 3. Our algorithm would consider vertex pair
(v, u) and compute score(v, u) that would equal 1 since v has one unique neighbor w.
However, our score function doesn’t say anything about the actual increase of the con-
traction width since it doesn’t account for the increased red degree of the vertex pair
neighbors like in this example - if though our score function reported a relatively good
score, we still ended up increasing width of the contraction.

To avoid such cases, we try to simulate the merge, measure a new width value,
and only after that decide whether this vertex pair is good enough. For this particular
benchmarking, we used instances from the exact track of the PACE challenge since
copying the graph turned out to be too expensive so the solver couldn’t solve enough
heuristic instances. Interestingly, we discover that simulating a merge and measuring
the width consistently yields inferior results. Using symmetric di↵erence, the average
solution size stands at 42, whereas simulating merges results in an average of 52. The
average time per instance also varies: 0.67 seconds for the symmetric di↵erence compared
to 9.53 seconds for the merge simulation. This disparity becomes even more pronounced
in larger heuristic instances, which is why we opt for the symmetric di↵erence.

To further explore di↵erent scoring strategies, we evaluate additional score func-
tions on heuristic graphs solvable within a 300-second time limit. The additional score
functions are as follows:

1. black score(v, u) = |NB(v) [NB(u)�NB(v) \NB(u)|
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Metric score degree score

Best solved 36 33

µgeo 467 490

µ 614 611
� 510 487

Table 4.2: Performance metrics for
score function. Better values are
bolded.

Figure 4.9: Analysis of scoring
functions: the plot shows a di↵er-
ence in solution size on a logarith-
mic scale.

This function computes the symmetric di↵erence but only considers black edges.
Since we apply the score function to our base solver, where we already filter out
vertices based on the number of red edges, we want to concentrate only on new
red edges appearing after the merge in the hope of more accurate results.

2. degree score(v, u) = black score(v, u) + |deg(v)� deg(u)|+ red(v) + red(u)

This function adds to the black score a term based on the absolute degree di↵erence
between v and u, along with the current number of red edges associated with the
vertices. The degree di↵erence term could help prefer merging vertices with similar
connectivity, potentially leading to better merge decisions. Adding a red degree of
vertices serves as a penalty for vertex pairs that already have a lot of red edges.

As we can see in Figure 4.9 black score(v, u) consistently delivers slightly worse re-
sults than our baseline score(v, u) function. Function based on black score fails to identify
red edges that would be transferred from existing vertices to the new vertex. Interest-
ingly, the function degree score(v, u) performs nearly as well as the score(v, u) function
in terms of the number of best-solved instances. In Table 4.2, we observe that the dis-
parity between the geometric and arithmetic means, as well as the deviation for the score
function, is minimal.

Upon closely examining the score functions, certain patterns become evident. Con-
sider the example depicted in Figure 4.10, where two vertices, v and u, are present.
Vertex v has two red edges, while vertex u has two black edges. Using our default
score function, we find that score(v, u) = 4, since the pair has four non-common neigh-
bors, all of which will eventually be red post-contraction. Conversely, the function that
considers only the newly emerging red edges provides black score(v, u) = 2, indicat-
ing that the contraction turns two edges red. Lastly, the degree-based function yields
degree score(v, u) = 2 + 0 + 2 = 4. The nuance here is that the degree score function
combines both the black degree score and the red degrees, making it analogous to the
default score function. However, this additional emphasis on degree di↵erence tends to
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favor vertices with similar degrees, as they are less likely to produce many red edges,
and penalizes large degree disparities and this is the main di↵erence.

v u
(v, u)

vu

Figure 4.10: A subgraph to demonstrate di↵erent score functions.

We choose to retain our initial default score function, as its simplicity consistently
delivers the best results in terms of the number of instances solved best.

4.2.2 Threshold choice

In this section, we delve into the selection of the threshold value ⌘ for the heuristics
presented in Section 4.1. The number of vertices selected in each iteration is a crucial
parameter for the heuristic, influencing its overall performance. Selecting too few can
lead to a high contraction width, while choosing too many can result in substantial
overhead, preventing the solver from completing within the allotted time. We use the
combined solver as our reference point for these comparisons.

Figure 4.11: Comparison of di↵erent ⌘

parameters for the initial heuristic in-
stances.

In Figure 4.11, we evaluate various vertex
quantities, both fixed and proportional to
the vertex count. This visualization focuses
on a limited set of instances because the
solver, for larger values like ⌘ = d0.1 · V e

or ⌘ = d
p
V e, exceeded the time con-

straints. Notably, a fixed value of 20 drasti-
cally underperforms compared to other val-
ues, which cluster closely. We excluded the
time-intensive values from further analysis
to maintain our goal of a swift heuristic.

Consider Figure 4.12, in which we compare a fixed threshold of 20 vertices against the
logarithm of the vertex count and its augmented variant with a multiplication constant.
Our overarching aim is to incorporate a dynamic threshold parameter. The underlying
logic is that as the number of vertices in the graph escalates, pinpointing an optimal
vertex pair becomes increasingly arduous. However, after numerous iterations, and espe-
cially with the scoring table introduced in Section 5.2, there’s an advantage to evaluating
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(a) Comparative performance based on solution
quality.

(b) Comparative performance based on execu-
tion time.

Figure 4.12: Comparison of the number of vertices pro iteration in terms of solution
quality and execution time.

fewer pairs. This strategy can expedite the solver’s process, especially since a plethora
of pairs have already been assessed.

Yet, as shown in Figure 4.12a, the di↵erences between solution sizes are slight. In
certain scenarios, particularly those with smaller solution sizes, the fixed threshold of
20 shows better performance. However, from a quantitative standpoint, the solver with
⌘ = 3 · dlog V e performs better in 42 instances, in contrast to the 29 instances where
⌘ = 20 prevails. Even though the results are somewhat similar, the determinative metric
is runtime. As depicted in Figure 4.12b, the logarithmic approach consistently outstrips
the other two methods. Both the fixed threshold and the logarithmic variant with an
augmenting coe�cient take more time on more substantial instances, nearly exhausting
the given time limit.

For our dataset, with a maximum vertex set size of approximately 3.5 · 105 vertices,
the logarithmic approach remains feasible, selecting around 45 vertices in the initial iter-
ations. Nonetheless, this method’s scalability is tied to the vertex set size. Consequently,
in larger instances, a fixed value of 20 vertices will inevitably outpace the logarithmic
approach in terms of runtime.



Chapter 5

Optimizing Twin-Width

This chapter outlines techniques for optimizing the computation of a graph’s twin-width.
In Section 5.1, we discuss preprocessing the graph to eliminate certain vertices. Section
5.2 discusses caching scores to avoid redundant computations. In Section 5.3, we focus
on locating vertex pairs within bipartite graphs. Section 5.4 introduces a method for
handling dense graphs.

5.1 Almost reduction rules

In many graph problems, kernelization techniques can be employed to obtain a reduced
instance of the problem, known as a kernel, which in turn lessens the computational
resources required for finding a solution. However, the computation of the twin-width
of a graph doesn’t readily lend itself to such kernelization, particularly when aiming for
a polynomial-size kernel. Despite this, it’s important to explore if practical compression
techniques without any theoretical guarantees could still o↵er some level of computa-
tional relief in this context.

In Subsection 5.1.1, we eliminate twin vertices and evaluate performance, and in
Subsection 5.1.2, we discuss di↵erent approaches to merging one-degree vertices.

5.1.1 Twin Rule

One of the most straightforward preprocessing techniques that we can apply is eliminat-
ing twins. This is crucial since contracting such vertex pairs doesn’t increase the width
of the contraction sequence and allows us to reduce the size of the instance we are trying
to solve. We use an algorithm called partition refinement presented by Habib, Paul, and
Viennot [HPV98] to identify twins in the graph. The algorithm returns a partitioned
vertex set, where each subset with more than one element corresponds to twin vertices.

Each algorithm iteration processes a vertex v, extracting its neighborhood in the
graph. The refinement operation is carried out for each existing partition in set P . The
operation involves calculating both the intersection and di↵erence between the current
partition and the set of neighbors around the vertex. If either result of the intersection
or di↵erence operation is non-empty, it is added to an updated set of partitions. This

35
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Algorithm 2 Partition Refinement

Input: G = (V,E)
Output: Partitioned vertex set P
1: procedure PartitionRefinement(G)
2: P  {V }

3: for v in V (G) do
4: P  Refine(P,N(v))
5: end for
6: return P

7: end procedure

8: procedure Refine(P,X)
9: Pnew  ;

10: for S in P do
11: Pnew  Pnew [ {S \X,S \X}

12: end for
13: return Pnew

14: end procedure

v

u

w

(a) True twin vertices v and u.

v

u

w

(b) False twin vertices v and u.

Figure 5.1: Illustrations of di↵erent types of twin neighbors.

process e↵ectively refines each partition in P by distinguishing between vertices based
on their graph neighborhoods.

Following the refinement step for vertex v, the set P is updated with the newly
computed partitions, and the algorithm proceeds to the next vertex until all vertices
have been processed. After completing these iterations, partitions containing more than
one vertex represent sets of twin vertices in the graph. Each set in the final partition
P encompasses vertices that could not be distinguished from each other through the
iterative refinement process, classifying them as twin vertices.

The complexity of executing this algorithm stands at O(V + E). However, this
algorithm presents a subtle challenge. Graphs can have two distinct categories of twin
vertices: true twins and false twins. As depicted in Figure 5.1a, true twins share the same
open neighborhood, while false twins have a mutual closed neighborhood, as shown in
Figure 5.1b. When executing our algorithm, we must choose between refining our vertex
set using either the closed or open neighborhood. Given that our process permits the
merging of both types of twin vertices without any penalty, our objective is to remove all
twin vertices. This requires running the algorithm twice - once for true twins and once for
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false twins. However, even a linear-time algorithm, when scaled with a constant, proves
computationally expensive. Consequently, the solver consumes the entire allocated time
merely to eliminate the twin vertices on instances from the heuristic track.

However, the problem is less pronounced on smaller graphs. We tested our solver on
instances from the exact track of the PACE challenge, which are notably smaller than
the heuristic ones.

Metric Twins Default

µgeo,tww 17.8 18.4

µtww 30 31.1

�tww 24 26

Time (total) 537 121
Time (avg.) 2.685 0.605

Table 5.1: Performance
metrics for twin rule. Bet-
ter values are bolded.

Figure 5.2: Time perfor-
mance of twin rule com-
pared to the default solver.

In Figure 5.2, we observe that the twin rule considerably impacts the time perfor-
mance. While this is manageable for exact instances, Table 5.1 shows that the total time
for the entire benchmark run has increased by over fourfold. However, the di↵erence in
solution sizes remains relatively minor. We observe only a slight di↵erence in the solu-
tions on heuristic instances. However, partition refinement significantly slows down the
solver, limiting it to solving only the initial smaller instances.

Nevertheless, eliminating twins is a crucial step, especially when calculating the twin-
width of a graph. An alternative to partition refinement is modular decomposition. Not
only does it allow for the elimination of twins, as they end up in the same module after
decomposing, but it also provides a systematic way to sort and identify further vertex
pairs based on this information. The e�cacy of this technique is further corroborated by
Yosuke Mizutani and Sullivan [YMS23] in their winner solver for the exact track of the
PACE challenge, which employs it among other strategies, underscoring its potential as
a powerful tool for graph restructuring.

5.1.2 One Degree Rule

Many graph problems allow reducing instance size by eliminating one-degree vertices
and including or excluding them from the solution, e.g., always taking a neighbor of
a one-degree vertex in the Vertex Cover problem. In twin-width, this is a bit more
complicated.

Suppose we want to contract a one-degree vertex with its direct neighbor. Then, the
width of the graph would be automatically increased by the size of the neighborhood of
this neighbor as shown in the Figure 5.3
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v u
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b

c

(v, u)
vu

a

b

c

Figure 5.3: Contracting one-degree vertex with its neighbor

We experiment with di↵erent one-degree rule strategies to determine whether they
could consistently cause reduced contraction width. For instance, we decide to try out
the following approaches:

1. Initial Strategy

• At the beginning, identify all one-degree vertices

• Pair and contract these one-degree vertices randomly with each other. Only con-
sider those vertices that had one degree in the initial state of the graph, even
though after multiple contractions some of them are not one degree anymore

Intuitively, this strategy must fail since, after all contractions, we have accumulated
all red edges at the single vertex, which is the opposite of our goal: distribute them
among all vertices to minimize the width. However, there is still a hope that if the
number of one-degree vertices is low enough then it wouldn’t exceed the actual twin-
width of the graph, allowing to still be under the current width at each contraction
step.

2. Half Strategy

• At each iteration step, identify all one degree vertices

• Pair and contract these dynamic one-degree vertices randomly with other dynamic
one-degree vertices. The vertices should have one degree at the moment of con-
traction.

This strategy is practically a lightweight version of the former one with the di↵erence
that we don’t accumulate all edges at one single vertex but just stop after the first
iteration. Given |Vd1 | one degree vertices in the graph we basically perform |Vd1 | or
|Vd1 | � 1 contractions, depending on |Vd1 | being odd or even number. In this version,
we cannot guarantee an upper bound for the width after those contractions. This is
because there might be instances where a vertex has numerous one-degree vertices that
weren’t contracted with their twins. Consequently, this vertex would accumulate all the
red edges, making it impossible to guarantee a specific width.

However, if we eliminate all twins before performing this one-degree rule strategy, we
can guarantee contraction width on Gi after i contraction steps to be 2. This is because
both vertices from the contracted vertex pair have di↵erent neighbors and, as a result,
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a vertex that remains after contraction would always have only two red edges, one with
its initial neighbor and one new red edge with a neighbor of the eliminated vertex.

3. Threshold-Based Strategy

• At the beginning, identify all one-degree vertices

• For each one-degree vertex, check its neighboring vertex’s degree. If the neighbor’s
degree is below a specified threshold �, contract the one-degree vertex with its
neighbor

We try to play around with the threshold itself to identify what is the optimal degree
of one-degree vertex’s neighbor. On the one hand, we want to keep it low since we want
to minimize the red edges of the neighbor. On the other hand, if we have too high value,
we automatically skew results since the vertex out of all neighbors with maximum degree
m out of all candidates would cause the width to be at least m since all its edges would
become red. Similar to the first strategy, we were hoping to pick such a threshold so
that after contracting one-degree vertices, the resulting width of the contraction would
still be far below its final value, so we wouldn’t a↵ect it too much. With S being a
one-degree vertex set, we choose two di↵erent thresholds:

�1 =
p

|S| (5.1)

�2 =

P
v2S,u2N(v)

|N(u)|

|S|
(5.2)

The first threshold is just a square root of the one-degree vertex set size. The second
one determines the average degree of neighbors of one-degree vertices.

Benchmarking one degree strategies To test our strategies, we choose all instances
that contain at least 100 one-degree vertices to evaluate our strategies. We pick such
instances that can be solved by our base solver described in the previous section. Here
are the results:

# Strategy Best Instances

0 Default 6

1 Initial 5

2 Half 10

3 Threshold �1 4

4 Threshold �2 7

Figure 5.4: Dotted grey line repre-
sents the number of one-degree ver-
tices in a given instance.
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As we can see from benchmarking, results are pretty ambiguous. Even though the
half strategy solved twice as many instances as others, it’s still hard to say whether it
plays a significant role in finding the optimal contraction sequence. From Figure 5.4 we
can see that almost all strategies are not so far from each other, and results don’t di↵er
much. As expected, the initial strategy turned out to be the worst since the graphs
contained relatively high number of one-degree vertices. However, even in such a setting
it was able to beat other strategies in 4 instances but had terrible results in the others.
In some cases where the strategies’ solution is almost equal to the number of one-degree
vertices, we suggest that the width of the contraction was significantly a↵ected by this
pre-processing and wasn’t near to optimal.

To make sure, we also compare the half strategy with the default solver on exact
instances with a ratio of one-degree vertices to all vertices over 0.2: half strategy again
performed better with 10 instances won versus 7 instances for the default solver. How-
ever, in most of the cases, the di↵erence in solution wasn’t significant, so one could
reason that it is still within the deviation of di↵erent contraction paths.

5.2 Caching scores

To address the overhead caused by computing the score(v, u) function mentioned in
Section 4.2.1, we introduce a score caching mechanism. The principle is intuitive: once
the score for a particular vertex pair has been computed, it is stored within a hash
map. In subsequent iterations, the pre-calculated value is fetched and utilized rather
than recomputing the score. The main problem is the dynamic nature of the graph since
vertex contractions can render these cached scores obsolete or inaccurate. However, post-
contraction, only the scores of the neighboring vertices of the contracted pair are subject
to change, as we demonstrated in Figure 4.8. Also, we make following observation:

Observation 5.1. Consider a vertex w in the graph state Gi where red(w) = n. If (v, u)
is the next vertex pair in the contraction sequence and w 2 N(v) [ N(u), then in the
subsequent graph state Gi+1, the value of red(w) will be at most n+ 1.

After contracting a vertex pair (v, u), the value of red(v) may increase substantially.
This is because v remains as the residual vertex, accumulating all new red edges. How-
ever, its neighbors—both existing and newly introduced—experience only minor changes.
The rationale for adopting score caching stems from a crucial observation: the magni-
tude of change in the red degree post each contraction is marginal. Hence, the benefit
derived from recalculating the exact scores instead of utilizing slightly outdated cached
values is negligible. This trade-o↵ between accuracy and computational e�ciency proves
favorable in our context.

However, it’s important to acknowledge that relying solely on cached scores can
lead to considerable deviations from true values over extended periods and after many
contractions. To mitigate this, we propose the introduction of a reset parameter ⌧ . If
the di↵erence between the current iteration and the last update for a specific vertex pair
surpasses this threshold, the score table with all scores calculated so far is cleared. This
strategy should ensure a judicious balance between accuracy and performance, enabling
the heuristic to handle large graphs more e�ciently.
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(a) Comparative performance based on solution
quality.

(b) Comparative performance based on execu-
tion time.

Figure 5.5: Comparison of di↵erent reset parameters ⌧ for clearing score table.

As observed in Figure 5.5, the results provide intriguing insights. In Figure 5.5a,
we note that the solution sizes remain relatively consistent for most reset parameters,
except for a significant divergence at ⌧ =1. This makes sense since when the score for
a vertex pair is computed once and never recomputed, there’s a decline in performance,
albeit not drastically. Turning our attention to Figure 5.5b, it becomes evident that
recalculating the score every iteration, particularly when ⌧ = 1, incurs a substantially
longer computation time compared to other parameters. Interestingly, for values ranging
from ⌧ = 50 to ⌧ = 1, the results cluster within a similar time frame, making it
challenging to designate a clear best performer.

The results presented o↵er two main observations. Firstly, they provide partial val-
idation for our initial hypothesis: once a score for a pair has been computed and po-
tentially merged, it does not significantly influence the scores of other vertex pairs.
Consequently, even if the score for a vertex pair was determined several iterations ago, it
remains a viable choice as long as the score remains relatively low. Secondly, examining
the time performance in Figure 5.5b reveals that recalculating scores less frequently does
not yield a substantial improvement in our performance. This suggests that while we
can a↵ord to recalculate scores periodically, it is not essential to do so in every iteration.

5.3 Bipartite graphs

Bipartite graphs can be split into two partitions where vertices from one don’t connect
with others in the same partition. After figuring out that a graph is bipartite, we split
it into two parts.

Establishing bipartiteness is accomplished using the breadth-first search. Each vertex
is assigned a color, and the traversal ensures adjacent vertices are oppositely colored. If,
at any point, adjacent vertices share a color, the graph is deemed non-bipartite. By the
end of this process, the coloring e↵ectively delineates the partitions.

With the partitions identified, the next phase targets optimal vertex pairing within
each partition. Given that vertices from distinct partitions don’t share edges, it’s in-
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Figure 5.6: Contracting vertices in a bipartite graph.

e�cient to consider vertices. That’s why we consider only vertex pairs within each
partition. After arriving at optimal pairs for both partitions, the final step merges the
representative vertices from each partition.

Since we want to have an equal comparison of a base solver with this bipartite
modification, we must decide which vertices we consider as candidates. We took the
first 20 vertices with the lowest red degree in a base version. To be consistent, we
decided to take 10 vertices from each partition correspondingly in an attempt to find
the best possible vertex pair for contraction.

However, no improvements were observed after multiple runs on di↵erent test in-
stances. After examining specific instances, we concluded that most of the connected
components that are bipartite are much smaller in size compared to the non-bipartite
ones. Also examining contraction sequences we see that our base solver never merges
vertices from di↵erent partitions anyway since such pairs always demonstrate a bad score
compared to other candidates within the same partition. Playing around with di↵erent
numbers of vertices pro partition, like considering only 5 vertices within the first and 15
within the second partition, skewed results even more as expected; the solver failed to
identify a better pair from another smaller partition since it contained fewer candidates
for consideration.

5.4 Density trick

Bonnet et al. [Bon+20] proved that bounded twin-width is preserved under FO inter-
pretations and transductions allowing complementing a graph. Consequently, devoting
computational power to dense graphs becomes ine�cient, especially when an optimal
twin-width can be more e↵ectively obtained from the graph’s complement.

Determining Graph Density Before processing a graph, it is imperative to gauge
its density. The density of a graph G with V vertices and E edges is determined by the
formula:

density(G) =
2 · E

V · (V � 1)
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If the computed density surpasses 0.5, our system opts to work with the graph’s
complement.

Constructing the Complement Graph The procedure to derive the complement
of a graph is uncomplicated. Initially, a complete graph is conceptualized, incorporating
every conceivable edge. However, a graph of merely 1000 vertices results in around 5 ·105

edges. We abstain from using our existing graph data structure to sidestep the ine�-
ciency of processing such a large graph. Instead, all potential edges are systematically
added to a hash set, ensuring that each edge (v, u) adheres to the ordered pair format
(min(v, u),max(v, u)). This deterministic ordering ensures a consistent representation.

Upon reading the actual graph, the edges recognized are instantly removed from
our hash set. Only once this procedure is accomplished for all edges do we proceed to
structure the graph using our original data structure.

Empirical Evaluation Although our dataset comprises a modest number of graphs
with high density values, the results in these instances are noteworthy.
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Figure 5.7: The left plot shows the time di↵erence, while the right plot illustrates the
improvement in solution size

Based on our observations, particularly dense graphs with a density of approximately
0.9 demonstrated up to a 3x acceleration in runtime. In contrast, graphs with a slightly
above-average density, around 0.51, didn’t show a speedup. In some cases, the runtime
even increased, although this was within a certain deviation. Notably, even for such
graphs, we observed an improvement in the solution size.

A pertinent question arises: Why is there a reduction in the solution size when the
exact solution for both a graph and its complement should, in theory, be identical?
We theorize that this phenomenon can be attributed to the nature of our heuristic. A
less dense graph inherently possesses fewer edges. Our heuristic principally operates
by ascertaining the count of red edges in every iterative step, thereby yielding a more
optimal outcome with sparser graphs.
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5.5 Twin-Width growth

Another strategy to enhance our likelihood of computing a near-optimal contraction se-
quence is to leverage previously identified sequences. If the solver successfully identifies
a contraction sequence within a time limit, we aim to store and employ it in our exhaus-
tive approach. This involves recording all contraction steps, the associated score for each
vertex pair, and the progression of the contraction width. The rationale is straightfor-
ward: during the computation of a current sequence, if at the i-th iteration a vertex pair
(v, u) elevates the contraction width beyond what was observed in the prior contraction
sequence for the same pair, we discard this sequence and initiate a new search.

Nevertheless, after several iterations, it becomes evident that the majority of the
newly computed sequences are eventually discarded. To understand this better, we
allowed our solver to execute multiple runs, focusing on the evolution of the contraction
width.

Figure 5.8: Example of di↵erent contraction sequences and growth of their width values.

As illustrated in Figure 5.8, the development of the contraction width is not direct
or predictable. This underscores the challenges highlighted in Section 3.4. For example,
after approximately 300 iterations, sequence 4 appears to o↵er the best width. Yet,
at some subsequent point, the trajectory deviates, and this sequence concludes with
the least favorable width. An alternative approach might be to consider only the final
contraction width of previously computed sequences as an upper bound, rather than
intermediate values. While this might o↵er a more consistent measure, it lacks the
e�ciency of early pruning suboptimal branches.



Chapter 6

Conclusion

In this thesis, we have explored the twin-width problem using a selection of heuristic
strategies. Our primary heuristics centered on vertex attributes, such as degrees and
neighborhood similarities. The intra-set pairing method grouped vertices with analogous
degrees, aiming for minimized post-contraction red edges. The random walk heuristic
was devised based on the locality of optimal vertex pairs. Our findings indicate that the
success of a heuristic is often contingent on the graph’s inherent properties.

The outcomes of our heuristics were instructive. While the density trick and twin
rules led to better solution sizes, the one-degree rule and considerations of bipartite
graphs had limited impact. Furthermore, our experiments showcased that expanding
heuristic parameters, like the vertex set size or score recalibration interval, only improved
results up to a certain threshold, after which there was no noticeable benefit. This
demonstrates the natural limitation of current heuristic approaches and the need for
more sophisticated strategies.

For future research directions, it would be worth investigating non-trivial reduction
rules and considering alternative vertex similarity measures, such as the Sørensen–Dice
or Jaccard coe�cients. Additionally, the non-linear progression of contraction width
remains an area worth more detailed study.

In conclusion, our heuristic methods have o↵ered some insights into the twin-width
problem. The solver and benchmarking tools developed in this research may be useful
for subsequent studies in this area. This thesis provides a starting point for ongoing
research and adjustments in twin-width computation.
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Twin-width I: tractable FO model checking . In: CoRR abs/2004.14789 (2020).
arXiv: 2004.14789 (cit. on pp. 9, 42).
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