
Heuristics for Twin-Width
Denis Koshelev

Technische Universität Berlin

December 12, 2023

1

Agenda
1. Introduction to Twin-Width problem

2

Agenda
1. Introduction to Twin-Width problem
2. Heuristics

• Intra-Set Pairing
• Random Walk
• Combination of both

3

Agenda
1. Introduction to Twin-Width problem
2. Heuristics

• Intra-Set Pairing
• Random Walk
• Combination of both

3. Score functions and threshold choice

4

Agenda
1. Introduction to Twin-Width problem
2. Heuristics

• Intra-Set Pairing
• Random Walk
• Combination of both

3. Score functions and threshold choice
4. Optimizations

• Almost reduction rules
• Caching mechanism

5. Conclusion

5

Introduction to Twin-Width problem
The goal is to collapse the graph into a single vertex by merging
vertices:

6

Introduction to Twin-Width problem
To define order of merge operations we use a contraction sequence

For example, S = ((b,d), (a, c), (ac, bd))

Illustrated by:

7

Introduction to Twin-Width problem
After merging, we mark every unique edge of the merged vertices red

𝑁(𝑏) = {𝑎, 𝑐, 𝑑}, 𝑁(𝑑) = {𝑏} and 𝑁(𝑏) △ 𝑁(𝑑) = {𝑎, 𝑐}

8

Introduction to Twin-Width problem
We have the same contraction sequence S = ((b,d), (a, c), (ac, bd))

But now we can measure its width, where 𝐺𝑖 is a graph after i steps:

width(𝑆) = max𝑖{max𝑣∈𝑉 (𝐺𝑖) red(𝑣)} = 2

9

Introduction to Twin-Width problem
The twin-width of the graph tww(G) represents the minimum possible
width achievable through a contraction sequence

10

Introduction to Twin-Width problem
The twin-width of the graph tww(G) represents the minimum possible
width achievable through a contraction sequence

An optimal contraction sequence 𝑆∗ = ((a, c), (b, d), (ac, bd)) that
results in tww(𝐺) = width(𝑆∗) = 1

11

How do we find good vertex pairs that minimize number of red edges?

12

Heuristics: Intra-Set Heuristic
Suppose we have a following graph after some contraction steps:

13

Heuristics: Intra-Set Heuristic
Find the vertices with minimum (red) degree and contract them first:

14

Heuristics: Intra-Set Heuristic
Algorithm:
1. Pick 𝜂 vertices with the lowest degree or red degree

15

Heuristics: Intra-Set Heuristic
Algorithm:
1. Pick 𝜂 vertices with the lowest degree or red degree
2. Among this vertex set, compute score for every possible pair

16

Heuristics: Intra-Set Heuristic
Algorithm:
1. Pick 𝜂 vertices with the lowest degree or red degree
2. Among this vertex set, compute score for every possible pair
3. Contract pair with the lowest score

17

Heuristics: Intra-Set Heuristic
Algorithm:
1. Pick 𝜂 vertices with the lowest degree or red degree
2. Among this vertex set, compute score for every possible pair
3. Contract pair with the lowest score
4. Repeat until we end up with a single vertex.

18

Heuristics: Intra-Set Heuristic
Algorithm:
1. Pick 𝜂 vertices with the lowest degree or red degree
2. Among this vertex set, compute score for every possible pair
3. Contract pair with the lowest score
4. Repeat until we end up with a single vertex.

Score is a size of symmetric difference of vertices’ neighborhoods:
score(𝑣, 𝑢) ≔ |𝑁(𝑣) △ 𝑁(𝑢)| = |𝑁(𝑣) ∪ 𝑁(𝑢) − �𝑁(𝑣) ∩ 𝑁(𝑢)|

19

Heuristics: Intra-Set Heuristic
Intuition behind:

1. Minimum degree: while collapsing the graph vertices with the
smallest degree most likely would cause fewer red edges

20

Heuristics: Intra-Set Heuristic
Intuition behind:

1. Minimum degree: while collapsing the graph vertices with the
smallest degree most likely would cause fewer red edges

2. Minimum red degree: contracting vertices with large red degree
might increase width of the contraction sequence after merge

21

Heuristics: Intra-Set Heuristic

Figure 1: Comparison of intra-set heuristics based on low (red) degree

22

Intra-Set heuristic based on vertex degree prevails. Why?

23

Heuristics: Intra-Set Heuristic
Intra-Set heuristic based on vertex degree prevails. Why?

Red degree based heuristic doesn’t consider for neighborhood sizes
→ At certain iteration step might not find a good pair with low score
→ Since neighborhood size isn’t minimized, width increase is large

24

Heuristics: Random Walk Heuristic
Observation 1: Two vertices 𝑣 and 𝑢 can have common neighbors if
and only if they are within the second neighborhood of each other

25

Heuristics: Random Walk Heuristic
Observation 1: Two vertices 𝑣 and 𝑢 can have common neighbors if
and only if they are within the second neighborhood of each other

Figure 3: Illustrations of direct and two-hop neighbors in a graph

26

Heuristics: Random Walk Heuristic
Observation 1: Two vertices 𝑣 and 𝑢 can have common neighbors if
and only if they are within the second neighborhood of each other

27

Heuristics: Random Walk Heuristic
Observation 1: Two vertices 𝑣 and 𝑢 can have common neighbors if
and only if they are within the second neighborhood of each other

Random Walk heuristic:
1. Pick 𝜂 vertices with the lowest degree or red degree

28

Heuristics: Random Walk Heuristic
Observation 1: Two vertices 𝑣 and 𝑢 can have common neighbors if
and only if they are within the second neighborhood of each other

Random Walk heuristic:
1. Pick 𝜂 vertices with the lowest degree or red degree
2. For each, perform a random walk with 1 or 2 steps

29

Heuristics: Random Walk Heuristic
Observation 1: Two vertices 𝑣 and 𝑢 can have common neighbors if
and only if they are within the second neighborhood of each other

Random Walk heuristic:
1. Pick 𝜂 vertices with the lowest degree or red degree
2. For each, perform a random walk with 1 or 2 steps
3. Compute score for such each pair

30

Heuristics: Random Walk Heuristic
Observation 1: Two vertices 𝑣 and 𝑢 can have common neighbors if
and only if they are within the second neighborhood of each other

Random Walk heuristic:
1. Pick 𝜂 vertices with the lowest degree or red degree
2. For each, perform a random walk with 1 or 2 steps
3. Compute score for such each pair
4. Contract pair with the lowest score

31

Heuristics: Random Walk Heuristic
Observation 1: Two vertices 𝑣 and 𝑢 can have common neighbors if
and only if they are within the second neighborhood of each other

Random Walk heuristic:
1. Pick 𝜂 vertices with the lowest degree or red degree
2. For each, perform a random walk with 1 or 2 steps
3. Compute score for such each pair
4. Contract pair with the lowest score
5. Repeat until we end up with a single vertex.

32

Heuristics: Random Walk Heuristic

Figure 4: Comparison of random walks based on low (red) degree

33

Let’s compare best of both versions of heuristics with each other.

34

Heuristics: Combine both

Figure 5: Comparison of best versions of both heuristics

35

Heuristics: Combine both
An interesting trend emerged: random walk heuristic outperformed
intra-set on the graphs with low average degree distribution.

36

Heuristics: Combine both
If the average degree deviation is large, the random walk tends to
consider pairs with large neighborhoods, resulting in a distruption of
our vertex selection logic
→ Contraction width increases drastically at certain point

37

Heuristics: Combine both
If the average degree deviation is large, the random walk tends to
consider pairs with large neighborhoods, resulting in a distruption of
our vertex selection logic
→ Contraction width increases drastically at certain point

Heuristic choice rule: if average degree deviation is less than 25,
random walk is employed; otherwise, the intra-set heuristic is used.

38

Heuristics: Random Walk Heuristic

Figure 6: Comparison of previous heuristics with combined approach

39

Score functions
As mentioned before, our main score function for vertex pair is the
following:

score(𝑣, 𝑢) ≔ |𝑁(𝑣) ∪ 𝑁(𝑢) − �𝑁(𝑣) ∩ 𝑁(𝑢)|

40

Score functions
However, it accounts only locally for two vertices, even though merge
might case width increase indirectly:

41

Score functions
We try different variations similar to our main function. Second
approach considers only red edges emerged at the current iteration:

black_score(𝑣, 𝑢) ≔ |𝑁𝐵(𝑣) ∪ 𝑁𝐵(𝑢) − �𝑁𝐵(𝑣) ∩ 𝑁𝐵(𝑢)|

42

Score functions
Third approach additionally to new red edges considers neighborhood
cardinality difference and penalizes for existing red edges:

degree_score(𝑣, 𝑢) ≔ black_score(𝑣, 𝑢) +
| deg(𝑣)� − deg(𝑢)|⎵⎵⎵⎵⎵⎵⎵

Makes sure vertices
have similar degree

+ red(𝑣) + red(𝑢)⎵⎵⎵⎵⎵⎵
penalizes for existing red edges

43

Score functions

44

Optimizations
1. Almost reduction rules

• Twin rule: eliminate all twins before employing the heuristic
• One Degree rule: try to contract some of the one degree vertices

in a randomized manner

45

Optimizations
1. Almost reduction rules

• Twin rule: eliminate all twins before employing the heuristic
• One Degree rule: try to contract some of the one degree vertices

in a randomized manner

Figure 8: Problem with one degree vertices
46

Optimizations
2. Threshold choice

• How to choose 𝜂 for candidates for both heuristics?
• After experimenting we decide to use 𝜂 = 3 · ⌈log(𝑉)⌉

47

Optimizations
2. Threshold choice

• How to choose 𝜂 for candidates for both heuristics?
• After experimenting we decide to use 𝜂 = 3 · ⌈log(𝑉)⌉

3. Density trick
• By dense graphs, we solve Twin-Width on its complement

48

Optimizations
2. Threshold choice

• How to choose 𝜂 for candidates for both heuristics?
• After experimenting we decide to use 𝜂 = 3 · ⌈log(𝑉)⌉

3. Density trick
• By dense graphs, we solve Twin-Width on its complement

4. Caching scores mechanism
• Instead of recomputing scores in every iteration, we introduce

caching table
• Clear table with scores every 100 iteration steps

49

Conclusion
1. Combined approach turned out to be the most efficient one

50

Conclusion
1. Combined approach turned out to be the most efficient one
2. Currently, there is no generic approach: most solvers, including

the one presented, use mix of different heuristics

51

Conclusion
1. Combined approach turned out to be the most efficient one
2. Currently, there is no generic approach: most solvers, including

the one presented, use mix of different heuristics
3. Little optimizations tricks reduce computation time but

don’t significantly improve the solution size.

52

Conclusion
1. Combined approach turned out to be the most efficient one
2. Currently, there is no generic approach: most solvers, including

the one presented, use mix of different heuristics
3. Little optimizations tricks reduce computation time but

don’t significantly improve the solution size.

Future steps:
1. Other non-trivial reduction rules

53

Conclusion
1. Combined approach turned out to be the most efficient one
2. Currently, there is no generic approach: most solvers, including

the one presented, use mix of different heuristics
3. Little optimizations tricks reduce computation time but

don’t significantly improve the solution size.

Future steps:
1. Other non-trivial reduction rules
2. New vertex scoring methods using Jaccard similarity coefficient

54

Conclusion
1. Combined approach turned out to be the most efficient one
2. Currently, there is no generic approach: most solvers, including

the one presented, use mix of different heuristics
3. Little optimizations tricks reduce computation time but

don’t significantly improve the solution size.

Future steps:
1. Other non-trivial reduction rules
2. New vertex scoring methods using Jaccard similarity coefficient
3. Explore changes of computed scores after multiple iterations

55

Thank you for your attention. Questions?

56

	Heuristics for Twin-Width
	Denis Koshelev
	Agenda
	Introduction to Twin-Width problem
	Introduction to Twin-Width problem
	Introduction to Twin-Width problem
	Introduction to Twin-Width problem
	Introduction to Twin-Width problem
	Heuristics: Intra-Set Heuristic
	Heuristics: Intra-Set Heuristic
	Heuristics: Intra-Set Heuristic
	Heuristics: Intra-Set Heuristic
	Heuristics: Intra-Set Heuristic
	Heuristics: Intra-Set Heuristic
	Heuristics: Random Walk Heuristic
	Heuristics: Random Walk Heuristic
	Heuristics: Random Walk Heuristic
	Heuristics: Combine both
	Heuristics: Combine both
	Heuristics: Combine both
	Heuristics: Random Walk Heuristic
	Score functions
	Score functions
	Score functions
	Score functions
	Score functions
	Optimizations
	Optimizations
	Conclusion
	Future steps:

